职称:特聘教授
学位:理学博士
研究方向:特种光纤制造技术、光纤激光、光通讯和光传感
Email:weixuboston@hotmail.com
太阳集团3143学科领军人才,特聘教授,国家特聘专家。澳大利亚悉尼大学光纤技术专业物理学博士。从事特种光纤材料机理研究、制造工艺开发和产品产业化20多年,其研发成果和产品获得美国通用电气公司GE、美国霍尼韦尔公司Honeywell、英国航天航空系统公司BAE Systems、瑞士ABB公司和日本三菱公司等全球顶尖企业的认可和批量采购。
教育背景
² 1995/10 - 1999/08,澳大利亚悉尼大学 University of Sydney,光纤技术物理博士
² 1992/09 - 1995/06,厦门大学,凝聚态理论物理,硕士
² 1988/09 - 1992/06,厦门大学,无线电物理,学士
工作经历
Ø 2023/05 – 至今,太阳城集团特聘教授,研究星空激光通讯核心激光光纤材料的耐辐照机理和制备。
Ø 2019/12 – 2023/05,武汉胜芯光电科技有限公司首席科学家,研发和生产填补国内空白、“卡脖子”的特种光纤。
Ø 2012/09 - 2019/10,中国兵器工业集团特聘首席专家、中国兵器工业集团武汉北方光电科技有限公司总经理。
Ø 2009/10 - 2012/08,美国国家宇航局NASA“太空飞行器液态燃料容量检测和氢气泄漏检测项目”的第一负责人Principle Investigator。
Ø 2001/05 - 2009/10,美国最大激光器生产商Coherent公司特种光纤部(原StockerYale公司)Research Engineer (2001), Senior Research Engineer (2002 ~ 2004), Principle Scientist (2005 ~ 2009)。
Ø 1999/08 - 2001/05,University of Sydney光纤技术中心Postdoctoral Fellow (1999/08~2000/04), Research Fellow (2000/04 ~ 2001/05)。
荣誉和报道
Ø 2012年美国国家宇航局NASA提交给美国总统白宫办公室的年度工作报告中汇报徐巍的研究成果
Ø 2012年美国国家宇航局NASA刊物The New Concept报道徐巍的研究成果
Ø 2010年获美国国家宇航局NASA“发明和贡献委员会”颁发的技术创新奖
国家级项目
Ø 2012,美国国家宇航局NASA Glen研究中心, 项目名称“Fiber Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging”, Phase 3。
Ø 2009 - 2011, 美国国家宇航局NASA肯尼迪航天中心, 项目名称“In-Space Distributed Fiber Optic Hydrogen Leak Sensor”, Phase 2。
Ø 2009, 美国国家宇航局NASA Glen研究中心, 项目名称“Fiber Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging”, Phase 1。
Ø 2008,美国国家宇航局NASA肯尼迪航天中心,项目名称“In-Space Distributed Fiber Optic Hydrogen Leak Sensor”, Phase 1。
授权发明专利
Ø 2018,徐巍,张栓民,叶亚楠,王静,“低损耗耐高温光纤”,发明专利号:ZL201410400444.4。
Ø 2012, Wei Xu, "Method and Apparatus for Distributed Sensing Utilizing Optical Scattering in Optical Waveguides,” 美国专利号US 8,203,707 B2。
Ø 2001, D. Wong, Wei Xu, P. Blazkiewicz, and T. Ryan, “Poled Waveguide Structure with Stabilised Internal Electric Field,” 国际专利号WO 01/31390。
Ø 2001 Wei Xu, D. Wong, G. Town, J. Canning, and P. Blazkiewicz, “Laser Assisted Thermal Poling of Silica Based Waveguides,” 国际专利号WO 01/20389)
期刊论文
1. X. Chi et al. “Fabrication of a Hydrogen Sensing Optical Fiber Using Atomic Layer Deposition”, IEEE Photonics Technology Letters, vol. 34, pp.687-690, July 2022.
2. X. Chi et al. “Optical Fiber–Based Continuous Liquid Level Sensor Based on Rayleigh Backscattering", Micromachines, 13, 633, 2022.
3. X. Chi, X. Ke and W. Xu, “Manufacturing Long Optical Fiber with Specialty Coatings for Distributed Sensing”, IEEE Photonics Technology Letters, vol. 31, pp.783-786, May 2019.
4. X. Chi, X. Ke and W. Xu, “Optical fibre liquid sensor for cryogenic propellant mass measurement,” IEE Electronics Letters, vol. 55, pp. 278-280, 2019.
5. W. Xu, Wenxin Zheng, Baozhong Liu, Brent Ware, Neal Zumovitch, “Fiber at the home: broadband communication and multiple sensing,” Invited Paper, Proceedings of SPIE, vol. 6784, 2007.
6. Y. Lin, P. Herman, W. Xu, “In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction,” Journal of Applied Physics, vol. 102, pp. 073106-073106-4, 2007.
7. Qiying Chen, Kevin P. Chen, W. Xu, and Suwas Nikumb, “Deep ultraviolet femtosecond laser tuning of fiber Bragg gratings,” Optics Communications, vol. 259, pp. 123-126, 2006.
8. Ben McMillen, Chuck Jewart, Michael Buric, W. Xu, Yuankun Lin, and Kevin P. Chen, “Fiber Bragg Grating Vacuum Sensors,” Applied Physics Letters, vol. 87, 234101, 2005.
9. Kevin P. Chen, Ben McMillen, Michael Buric, Chuck Jewart, W. Xu, “Self-Heated Fiber Bragg Grating Sensors,” Applied Physics Letters, vol. 86, 143502, 2005.
10. Chen, K.P., Cashdollar, L.J., W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photonics Technology Letters, vol. 16, pp.1897-1899, Aug. 2004
11. P. Blazkiewicz, W. Xu, and S. Fleming, “Optimum parameters for CO2 laser-assisted poling of optical fibers,” Journal of Lightwave Technology, vol. 20, pp. 965-968, June 2002.
12. P. Blazkiewicz, W. Xu, and S. Fleming, “Mechanism for thermal poling in twin-hole silicate fibers,” Journal of Optical Society of America, Part B, vol. 19, pp. 870-874, April 2002.
13. P. Blazkiewicz, W. Xu, D. Wong, S. Fleming, and T. Ryan, “Modification of Thermal Poling Evolution Using Novel Twin-Hole Fibers,” Journal of Lightwave Technology, vol. 19, pp. 1149-1154, August 2001.
14. W. Xu, P. Blazkiewicz, and S. Fleming, “Silica Fibre Poling Technology,” Advanced Materials, vol. 12-13, pp. 1014-1018, July 2001.
15. P. Blazkiewicz, W. Xu, S. Fleming, “Modification of the Third-Order Nonlinearity in Poled Silica Fibers,” Proceedings of SPIE, vol. 4216, Optical Devices for Fiber Communication II, pp. 129-138, February 2001.
16. W. Xu, P. Blazkiewicz, D. Wong, S. Fleming and T. Ryan, “Specialty Optical Fibre for Stabilizing and Enhancing Electro-optic Effect Induced by Poling,” IEE Electronics Letters, vol. 36, pp. 1265-1266, 2000.
17. W. Xu, D. Wong, S. Fleming, and P. Blazkiewicz, “Electrically Tunable Thermally-Poled Bragg Gratings,” Optical Society of America, Trends in Optics and Photonics (TOPS), vol. 33, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, pp. 363 – 367, 2000.
18. P. Blazkiewicz, W. Xu, D. Wong, J. Canning, M. Aslund, and Graham Town, “Experimental Demonstration of Carbon-Dioxide Laser Assisted Poling of Optical Fibers,” Optical Society of America, Trends in Optics and Photonics (TOPS), vol. 33, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, pp. 393 – 396, 2000.
19. W. Xu, D. Wong, S. Fleming, and P. Blazkiewicz, “Evolution of Charge Layers during Thermal Poling of Silica Fibres,” Optical Society of America, Trends in Optics and Photonics (TOPS), vol. 33, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, pp. 414 – 418, 2000.
20. P. Blazkiewicz, W. Xu, D. Wong, J. Canning, M. Aslund, and G. Town, “Carbon-Dioxide Laser-Assisted Poling of Silicate Optical Fibers,” OSA Optics Letters, vol. 25, pp. 200-202, 2000.
21. W. Xu, J. Arentoft, D. Wong, and S. Fleming, "Evidence of space-charge effects in thermal poling," IEEE Photonics Technology Letters, vol. 11, pp. 1265-1267, 1999.
22. D. Wong, W. Xu, and S. Fleming, “Charge dynamics and distributions in thermally poled silica fibre,” Proceedings of SPIE, vol. 3847, pp. 88-93, 1999.
23. W. Xu, M. Janos, D. Wong, and S. Fleming, "Thermal poling of boron-doped germano-silicate fibre," Japan IEICE Transactions on Communications, vol. E82-B, pp. 1283-1286, 1999, and Japan IEICE Transactions on Electronics, vol. E82-C, pp. 1549-1552, 1999.
24. W. Xu, D. Wong, and S. Fleming, “Evolution of the linear electro-optic coefficients and the third order nonlinearity in prolonged negative thermal poling,” IEE Electronics Letters, vol. 35, pp. 922-923, 1999.
25. M. Janos, W. Xu, D. Wong, H. G. Inglis and S. Fleming, "Growth and decay of the electro-optic effect in thermally poled B/Ge co-doped fibre," IEEE Journal of Lightwave Technology, vol. 17, pp. 1037-1041, 1999.
26. D. Wong, W. Xu, and S. Fleming, “Dynamics of frozen-in fields in germanosilicate fibres during thermal poling,” Optical Society of America, Trends in Optics and Photonics (TOPS), vol. 29, WDM Components, pp. 278 - 285 1999.
27. D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in field in thermally poled fibres," Optical Fiber Technology, vol. 5, pp. 235-241, 1999.
28. D. Wong, W. Xu, S. Fleming and M. Janos, “Recent results with thermal poling of fibre,” Proceedings of SPIE, vol. 3542, pp. 120-123, 1998.
29. D. Wong, W. Xu, M. Janos, J. Chow, R. Hall, and S. Fleming, "Time evolution of electro-optic effect in fibre during thermal poling," Japanese Journal of Applied Physics, vol. 37, suppl. 37-1, pp. 68-70, 1998.
30. S. Fleming, D. Wong, H.G. Inglis, W. Xu, T. Fujiwara and P. Hill, "Poled fibre devices for electro-optic modulation", Invited paper, Proceedings of SPIE, vol. 2893, pp. 450-460, 1996.